ISMENIUS CAVUS: ANCIENT LAKE DEPOSITS AND CLAY MINERALS SURROUNDED BY AMAZONIAN GLACIERS N.Mangold¹, E. Dehouck², F. Poulet³, V. Ansan¹. and S. Le Mouélic¹ ¹LPGNantes UMR6112 CNRS Université Nantes, France, ²StonyBrook University, New York, USA, ³IAS, Université Paris XI, Orsay, France A biking trip through Mars history!! #### Geographic and geologic context 1st EZ Workshop for Human Missions to Mars **Ismenius Cavus**: Coord: 33.5°N, 17°E, Elevation: -3.5 to -1.5 km At the junction between current mid-latitude ice deposits and low latitude clay minerals #### **Exploration Zone Map** 1st EZ Workshop for Human Missions to Mars **Ismenius Cavus**: Coord: 33.5°N, 17°E, Elevation: -3.5 to -1.5 km At the junction between current mid-latitude ice deposits and low latitude clay minerals 1st EZ Workshop for Human Missions to Mars - 2 Glacial landforms - Modified ejecta blanket - **3,4** Channel in the delta deposits - **3,4** Delta deposits Geologic map caption - Depression floor - Phyllosilicate-bearing unit - Noachian plateau 10 km At the junction between current mid-latitude ice deposits and low latitude clay minerals Dehouck et al., Planet. Spa. Sci., 2010 - Glacial landforms - Geologic map caption 1st EZ Workshop for Human Missions to Mars - Modified ejecta - Depression floor - Phyllosilicate-bearing - Channel in the delta deposits Noachian plateau **3,4** Delta deposits Delta front -3.3 A paleolake with clay minerals in lake sediments - Three delta fans (blue on map) (Ori et al, 2000) - HRSC topography consistent With a delta plain and a steep front - The three fans have a plateau at the same elevation (-3100 m) - ⇒ Consistent with coeval activity in a past lake (>400 m deep) 2 Glacial landforms Geologic map caption 1st EZ Workshop for Human Missions to Mars Modified ejecta blanket Depression floor Channel in the delta deposits Phyllosilicate-bearing unit **3,4** Delta deposits A paleolake with clay minerals in lake sediments Specific type of clay minerals on dark terrains (Poulet et al, 2005, OMEGA/Mars Express) Actually just darker than the surroundings No high resolution images at that time Dehouck et al., Planet. Spa. Sci., 2010 Glacial landforms Geologic map caption 1st EZ Workshop for Human Missions to Mars Modified ejecta Depression floor Channel in the Phyllosilicate-bearing delta deposits A paleolake with clay minerals in lake sediments CRISM spectral map (Dehouck et al, 2010) Noachian plateau Fe-Mg phyllosilicates (likely smectites) **Correlation with** erosional window of layered deposits Clay minerals consistent with fine-grained deposits at lake bottom #### Science ROI 1 1st EZ Workshop for Human Missions to Mars 2 Glacial landforms Modified ejecta - Depression floor Geologic map caption - blanket Channel in the - 1 Phyllosilicate-bearing - delta deposits Noachian plateau #### Close-up on clay-rich layered deposits Dehouck et al., Planet. Spa. Sci., 2010 ### Science ROI 2a lissions to Mars - **2** Glacial landforms - Geologic map caption 1^{st} EZ Workshop for Human Missions to Mars - Modified ejecta blanket - Depression floor - **3,4** Channel in the delta deposits - Phyllosilicate-bearing - **3,4** Delta deposits - Noachian plateau **Lobate debris aprons** 10 km east of the landing zone Dehouck et al., Planet. Spa. Sci., 2010 #### Science ROI 2a - 2 Glacial landforms - Geologic map caption 1st EZ Workshop for Human Missions to Mars - Modified ejecta blanket - Depression floor - **3,4** Channel in the delta deposits - Phyllosilicate-bearing unit - **3,4** Delta deposits - Noachian plateau Pitted texture typical of sublimation of ice (Mangold, 2003) Similar to Deuteronilus glaciers (Head et al., this morning) Close-up Dehouck et al., Planet. Spa. Sci., 2010 #### Science ROI 2b 1st EZ Workshop for Human Missions to Mars - Glacial landforms - Modified ejecta blanket - Channel in the delta deposits - **3,4** Delta deposits Geologic map caption Depression floor Phyllosilicate-bearing Noachian plateau #### **Lobate debris apron** 15 km west of the landing zone ### Science ROI 3, 4 Glacial landforms Geologic map caption 1st EZ Workshop for Human Missions to Mars Modified ejecta blanket Depression floor Fluvial and deltaïc deposits from Mamers Vallis Channel in the delta deposits Phyllosilicate-bearing Clay minerals in some layers Fluvial bars **3,4** Delta deposits HiRISE km Late fluvial incision Flow direction Layers at delta front ### Science ROI 5 1st EZ Workshop for Human Missions to Mars - 2 Glacial landforms - Modified ejecta blanket - **3,4** Channel in the delta deposits - **3,4** Delta deposits Geologic map caption Depression floor Phyllosilicate-bearing unit Noachian plateau Ejecta from craters: Access to Noachian crustal rocks Limitation: Maybe covered by ice Dehouck et al., Planet. Spa. Sci., 2010 # Science ROIs Summary: Range of geologic time 1st EZ Workshop for Human Missions to Mars #### Resource ROI 1 1st EZ Workshop for Human Missions to Mars Clay rich deposits contain water e.g., saponite: (Ca,Na)0,3(Mg,Fe)3(Si,Al)4O10(OH)2•4(H2O) ### Resource ROIs 2a and 2b 1st EZ Workshop for Human Missions to Mars #### Glacial deposits contain ice Texture with some sublimation but no intense sublimation suggests ice likely near surface (<<10 m) #### Resource ROI 3 1st EZ Workshop for Human Missions to Mars Area of sand few kms west of the landing zone Mobile material for construction (composition is pyroxene rich from spectral data) #### Resource ROIs Summary 1st EZ Workshop for Human Missions to Mars - Two main resources for water: Clay minerals near the landing site proposed Water ice 10 km of potential landing site - Mobile material for constructions close to landing site ## Science ROI(s) Rubric 1st EZ Workshop for Human Missions to Mars | | | | Site Factors | SR011 | SR012 | SROI3 | SR014 | SROIS | RR011 | RR012 | RR013 | EZ SUM | | |----------|---------------------|-----------------------------|---|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|--| | | Astrobio | Threshold | Potential for past habitability Potential for present habitability/refugia | • | | • | • | | • | | | 4,0 | | | | | | Potential for present habitability/refugia | | ? | | | | | ? | | 0,2 | | | | Ä | Qualifying | Potential for organic matter, w/ surface exposure | • | | • | 0 | | • | | | 3,1 | | | | nce | Threshold | Noachian/Hesperian rocks w/ trapped atmospheric gases | • | | • | | 0 | • | | | 3,1 | | | | Scie | | Meteorological diversity in space and time | ? | ? | 0 | | | ? | ? | | 0,5 | | | | eric | | High likelihood of surface-atmosphere exchange | | • | | | | | • | • | 3,0 | | | eria | Atmospheric Science | Qualifying | Amazonian subsurface or high-latitude ice or sediment | | • | | | | | • | | 2,0 | | | Criteria | Atm | | High likelihood of active trace gas sources | | | | | | | | | | | | Site (| | | Range of martian geologic time; datable surfaces | able surfaces ? | | • | | | 2,1 | | | | | | <u></u> | | Threshold | Evidence of aqueous processes | | | • | • | | • | | | 4,0 | | | | | Threshold | Evidence of aqueous processes | • | | | | | | | | | | | | | Threshold | Potential for interpreting relative ages | • | ? | | | 0 | • | ? | | 2,3 | | | | ce | Threshold | | • | ? | | | 0 | • | ? | | 2,3 | | | Science | cience | Threshold | Potential for interpreting relative ages | • | ? | | | 0 | • | ? | | 2,3 | | | | Geoscience | Threshold | Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times | • | | | | • | • | ? | | | | | | Geoscience | Threshold Qualifying | Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost | | | | | • | | ? | | 2,0 | | | | Geoscience | | Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost Noachian or pre-Noachian bedrock units | | | | | • | | ? | | 2,0 | | | | Geoscience | | Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost Noachian or pre-Noachian bedrock units Outcrops with remnant magnetization | | | | | • | | ? | | 2,0 | | | Key | | | | | | | | |-----|----------------------------|--|--|--|--|--|--| | • | Yes | | | | | | | | 0 | Partial Support or Debated | | | | | | | | | No | | | | | | | | ? | Indeterminate | | | | | | | # Resource ROI(s) Rubric 1st EZ Workshop for Human Missions to Mars | | | | Site Factors | SROI1 | SR012 | SROI3 | SROI4 | SROIS | RR011 | RR012 | RROI3 | EZ SUM | |-----------------------|---------------------------|------------|---|-------|-------|-------|-------|-------|-------|-------|-------|--------| | | Water Resource | gineering | Meets First Order Criteria (Latitude, Elevation, Thermal Inertia) | | | | | | | | | | | | | | Potential for ice or ice/regolith mix Potential for hydrated minerals | | • | | | | | • | | 2,0 | | | | | Potential for hydrated minerals | | | 0 | ?. | | • | | | 2,2 | | | | | Quantity for substantial production | | • | 0 | | | • | • | | 4,1 | | | | Threshold | Potential to be minable by highly automated systems | | | | | | ? | | | 0,2 | | <u> </u> | | | Located less than 3 km from processing equipment site | | | | | | • | | | 2,0 | | <u> </u> | | | Located no more than 3 meters below the surface | | 0 | 0 | ? | | • | 0 | | 2,4 | | ב | | | Accessible by automated systems | | ? | | | | • | ? | | 2,2 | | ני | Š | | Potential for multiple sources of ice, ice/regolith mix and hydrated minerals | | • | | 0 | | | • | | 2,1 | | | Engineering | Qualifying | Distance to resource location can be >5 km | | • | • | | | | • | | 3,0 | | ב | | | Route to resource location must be (plausibly) traversable | | • | ? | ? | | | • | | 2,2 | | | | | ${\sim}50~\text{sq}$ km region of flat and stable terrain with sparse rock distribution | | | | | | • | | | 2 ,0 | | and Civil Engineering | | Threshold | 1-10 km length scale: <10° | | • | ? | ? | | • | • | | 4,2 | | <u> </u> | | | Located within 5 km of landing site location | | | | | | • | | | 2 | | n
D | ĵuΞ | Qualifying | Located in the northern hemisphere | | • | • | • | • | • | • | • | 8,0 | | ū | | | Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith | | | | 0 | | ? | | • | 1,3 | | = | Civil | | Utilitarian terrain features | | | | | | | | | | | ~ | Food | Qualifying | Low latitude | | | | | | | | | | | _ | | | No local terrain feature(s) that could shadow light collection facilities | | • | | | | • | • | • | 5,0 | | ב | | Qualitying | Access to water | | • | | | | • | • | | 4,0 | | | | | Access to dark, minimally altered basaltic sands | | | | | | | | • | 1,0 | | ISKU | | | Potential for metal/silicon | | | | | ? | ? | | ? | 0,4 | | 7 | Metal/Silicon
Resource | | Potential to be minable by highly automated systems | | | | | | ? | | • | 1,2 | | 4 | | Threshold | Located less than 3 km from processing equipment site | | | | | | ? | | • | 1,2 | | | Sil | | Located no more than 3 meters below the surface | | | | | | | | • | 1,0 | | | etal/Silico
Resource | | Accessible by automated systems | | | | | | | | • | 1,0 | | | det
Re | | Potential for multiple sources of metals/silicon | | | | | | | | | | | | _ | Qualifying | Distance to resource location can be >5 km | | | | | • | | | | 1,0 | | | | | Route to resource location must be (plausibly) traversable | | | | | | | | | | | Key | | | | | | | | |-----|----------------------------|--|--|--|--|--|--| | • | Yes | | | | | | | | 0 | Partial Support or Debated | | | | | | | | | No | | | | | | | | ? | Indeterminate | | | | | | | ### Highest Priority EZ Data Needs 1st EZ Workshop for Human Missions to Mars - High resolution stereo imagery on glacial flows (both for Resource and Science ROI2) - High resolution imagery on Mamers Vallis outlet (for Science ROI4 and for navigation) #### **Conclusion:** A unique location on Mars with both present ice and past lake sediments with clay minerals #### **BACKUP SLIDES** #### Prioritization List of EZ Data Needs 1st EZ Workshop for Human Missions to Mars - Provide a prioritized list of orbiter/rover data to be collected to assess the science potential of the EZ. - Provide a prioritized list of orbiter/rover data to be collected to assess the resource potential of the EZ. - This data could be either from a current or future asset. - If data to be collected are from existing assets please indicate: - HiRISE - CRISM - THEMIS - other Provide a short justification as to what questions this will address.